LTMO Case Study Army Installation in Pacific Northwest

Dave Becker USACE HTRW CX

Background

- Large Pump & Treat System, Army Installation, USACE Project
 - 2-Mile-Long TCE Plume from Dump Area (DNAPL)
 - Containment System at Boundary
 - Additional Wells Near Source
 - Hydrogeology Outwash Sands, Gravels, Tills, Non-Glacial Deposits. Plume in Outwash
- ~ 40 Wells Had Been Sampled Quarterly
 - Some Background, Some in Source, Some in Middle of Plume, Some Near Boundary/Downgradient
 - Some Wells at Different Depths

Site Layout

Previous Analyses of Monitoring Program

- Program: Quarterly Sampling of ~40 Wells
- Optimization Recommended in 1999 Remediation System Evaluation
 - Professional Judgment Only
 - Recommended 3 Wells Removed from Network
 - Assessed Trends Recommended Lower Frequency
 - RSE Recommended More Rigorous Analysis
- USACE District Used MAROS to Optimize, Removed Some Wells, Added Others in 2001
- Demonstration Project Applied Three-Tiered, MAROS

Three-Tiered Approach – Qualitative Evaluation

- Recommended Removal of 15 Wells
- Reduced Frequency of 11 Other Wells
- Recommended Reduced Frequency for Sampling Extraction Wells to Annually
- Recommended Change in Analytical Method
- Revisit Monitoring if Change in Extraction System

Three-Tiered Approach – Trend Analysis

- Plot Concentrations over Time for Monitoring Points
- Perform Statistical Tests for Trend
 - Mann-Kendall Test
 - Non-parametric
 - Specified Level of Confidence in Trend
 - Quantify Trend Line
- Different Recommendations Based on Trend & Location
 - Increasing Trend: Retain if Not in Source Area
 - Decreasing Trend: Retain if in Source Area or Sentinel Well
 - No Trend: Retain if Sentinel Well or if Variability High
 - Non-Detect: Retain if Sentinel Well Only
- Recommended Removal of 20 Wells

Trend for One Monitoring Well

Three-Tiered Approach – Spatial Network Analysis

- Evaluate Monitoring Network using Geostatistics
 - Develop Variograms, Model
 - Krige Iteratively Using All but One Well
 - Look at Median Prediction Errors vs. Base Case (with All Wells)
 - Rank Wells Based on Error Increase if Excluded
- Recommended Removal of 21 Wells
- Recommended Adjustment of Some Proposed New Wells in Areas of High Error

A) Base-case (All wells)

PA-383

B) "Missing" Well PA-383

Legend

Well missing from kriging realization

Prediction Standard Error Map

Less spatial uncertainty

Greater spatial uncertainty

FIGURE 6.2 IMPACT OF MISSING WELLS ON PREDICTED STANDARD ERROR

Monitoring Network Optimization

PARSONS

Denver, Colorado

Three-Tiered Approach – Overall Analysis

- Professionals Reviewed Results of Three Analyses and Combined into Recommendation
- Overall Recommendation:
 - Remove 13 Wells, Add One
 - Relative to Original Quarterly Sampling Reduce
 Frequency: 7 Semi-Annually, 17 Annually, 14 Biennially
 (16 to Stay Quarterly), Reduce Sampling of Extraction
 Wells
 - Many of These Changes Made in 2001 Evaluation
 - However, Still Reduce Number of Samples from 180 to 107/year Compared to Current (Revised 2001) Program

MAROS Analysis

- Based on Mann-Kendall Trend Analysis, Plume is Relatively Stable, Requiring Only Moderate Sampling Intensity (semiannual or less frequent)
- Well Redundancy Analysis
 - Delaunay Approach Similar to Geostatistics, but Simpler Based on Slopes between Lines Connect
 - Delaunay Triangle Analysis Indicated Could Remove 8 Wells, but Would Recommend Adding 6 Others

MAROS Analysis, Continued

- Sample Frequency Using Modified CES Approach:
 - –56% Less Samples per Year Relative to
 Original Quarterly Sampling, But Similar to
 2001 Revision to Program

Net Result

• Save \$34,000 to \$36,000 / Year

